联系金蒙新材料
- 高精度碳化硅陶瓷制品无模成型工艺[ 08-20 16:21 ]
- 虽然采用凝胶注模成型工艺可以实现复杂形状陶瓷制品的近净尺寸制备,但该工艺对模具要求高,在制备复杂大尺寸部件时需设计和制造模具,增加了时间成本和模具成本,一定程度上制约了该工艺在陶瓷结构件批量化生产中的应用。另一方面,对一些尺寸精度要求高的陶瓷部件,凝胶注模成型工艺则无法满足其尺寸精度要求。 与传统“自下而上”的无模成型工艺不同,陶瓷素坯加工工艺(Greenceramicmachining,GCM)是一种“自上而下”的工艺,其原理类似金属材料或木材的加工过程如车、
- 碳化硅陶瓷凝胶注模成型工艺[ 08-19 10:18 ]
- 凝胶注成型工艺是制备碳化硅陶瓷部件的基础,该工艺是一种精细的胶态成型工艺(Colloidalprocessing),可实现大尺寸、复杂结构坯体的高强度、高均匀性、近净尺寸成型,陶瓷料浆制备是凝胶注模成型工艺中的关键环节之一。 就碳化硅在光刻机构件中的应用而言,分散良好、高稳定性水基碳/碳化硅料浆的制备是获得优质、均匀结构碳/碳化硅坯体的前提。此外,料浆具有高的固相体积分数则可以有效减小陶瓷坯体干燥时的收缩,有利于实现陶瓷部件的近净尺寸成型。相应地,陶瓷料浆的制备需要解决两大难题:一是碳和碳化硅两种陶瓷粉料在相
- 集成电路制造装备用精密陶瓷结构件的特点[ 08-18 16:52 ]
- 集成电路制造关键技术及装备主要有包括光刻技术及光刻装备、薄膜生长技术及装备、化学机械抛光技术及装备、高密度后封装技术及装备等,均涉及高效率、高精度、高稳定性的运动控制技术和驱动技术,对结构件的精度和结构材料的性能提出了极高的要求。 以光刻机中工件台为例,该工件台主要负责完成曝光运动,要求实现高速、大行程、六自由度的纳米级超精密运动,如对于100nm分辨率、套刻精度为33nm和线宽为10nm的光刻机,其工件台定位精度要求达到10nm,掩模硅片同时步进和扫描速度分别达到150nm/s和120nm/s,掩模扫描速度
- 固相烧结碳化娃(SSiC)优缺点[ 08-16 14:41 ]
- 固相烧结碳化硅晶界较为“干净”,高温强度并不随温度的升高而变化,一般在温度达1600℃强度不发生变化。固相烧结碳化硅主要缺点是需较高的烧结温度(>2000℃),对原材料的纯度要求高,烧结体断裂韧性较低,有较强的裂纹强度敏感性,在结构上表现为晶粒粗大且均匀性差,断裂模式为典型的穿晶断裂。 SSiC材质的泵的轴、滑动和密封环具有长使用寿命的多项优势。在高工作温度下也具有出色的耐化学性和耐腐蚀性。因此,SSiC是所有需要高耐磨性的领域的最佳陶瓷材料。京瓷可提供定制最大外径达560毫米的大型精
- 如何实现碳化硅晶圆的高效低损伤抛光?[ 08-15 17:33 ]
- SiC晶型结构特点使得SiC材料具有较高硬度与化学稳定性,导致在抛光过程中材料去除率较低,因此探索基于化学机械抛光基本工艺的辅助增效手段,对于实现SiC材料产业化应用和推广具有重要的意义。 化学机械抛光辅助增效技术材料去除机理本质是通过辅助增效技术手段来控制SiC表面较软氧化层的形成并从力学上改善SiC氧化层材料的去除方式。目前抛光中的辅助增效手段主要有等离子辅助、催化剂辅助、紫外光辅助和电场辅助。 01等离子辅助工艺 等离子辅助抛光(PlasmaAssistedPolishing,PAP)工艺是